Regulation of Galactolipid Biosynthesis by Overexpression of the Rice MGD Gene Contributes to Enhanced Aluminum Tolerance in Tobacco
نویسندگان
چکیده
Membrane lipid alterations affect Al tolerance in plants, but little is known about the regulation of membrane lipid metabolism in response to Al stress. Transgenic tobacco (Nicotiana tabacum) overexpressing rice monogalactosyldiacylglycerol (MGDG) synthase (OsMGD) gene and wild-type tobacco plants were exposed to AlCl3, and the impact of Al toxicity on root growth, Al accumulation, plasma membrane integrity, lipid peroxidation and membrane lipid composition were investigated. Compared with the wild type, the transgenic plants exhibited rapid regrowth of roots after removal of Al and less damage to membrane integrity and lipid peroxidation under Al stress, meanwhile, the Al accumulation showed no difference between wild-type and transgenic plants. Lipid analysis showed that Al treatment dramatically decreased the content of MGDG and the ratio of MGDG to digalactosyldiacylglycerol (DGDG) in wild-type plants, while it was unchanged in transgenic plants. The stable of MGDG level and the ratio of MGDG/DGDG contribute to maintain the membrane stability and permeability. Moreover, Al caused a significant increase in phospholipids in wild-type plants, resulting in a high proportion of phospholipids and low proportion of galactolipids, but these proportions were unaffected in transgenic plants. The high proportion of phospholipids could contribute to a higher rate of Al(3+) binding in the membrane and thereby leads to more membrane perturbation and damage. These results show that the regulation of galactolipid biosynthesis could play an important role in maintaining membrane structure and function under Al stress.
منابع مشابه
Maintenance of Chloroplast Structure and Function by Overexpression of the Rice MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE Gene Leads to Enhanced Salt Tolerance in Tobacco.
In plants, the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactodiacylglycerol (DGDG) are major constituents of photosynthetic membranes in chloroplasts. One of the key enzymes for the biosynthesis of these galactolipids is MGDG synthase (MGD). To investigate the role of MGD in the plant's response to salt stress, we cloned an MGD gene from rice (Oryza sativa) and generated tobacc...
متن کاملStereo-Specific Transcript Regulation of the Polyamine Biosynthesis Genes by Enantiomers of Ornithine in Tobacco Cell Culture
Background: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet.Objectives: This study aimed to evaluate effect of ornithine enantiomers on exp...
متن کاملRegulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice
Drought stress is one of the most determinative factors of agriculture and plays a major role in limiting crop productivity. This limitation is going to rising through climate changes. However, plants have their own defense systems to moderate the adverse effects of climatic conditions. MicroRNA-mediated post-transcriptional gene regulation is one of these defense mechanisms. The root endophyti...
متن کاملLight and cytokinin play a co-operative role in MGDG synthesis in greening cucumber cotyledons.
The current research investigated the regulation of monogalactosyldiacylglycerol (MGDG) biosynthesis, catalyzed by MGDG synthase (MGD) (UDP-galactose:1,2-diacylglycerol 3-beta-D-galactosyltransferase; EC 2.4.1.46), during chloroplast development in cucumbers (Cucumis sativus L. cv. Aonagajibai). In etiolated seedlings, white light induced a transient increase in MGD mRNA, followed by a subseque...
متن کاملFunctional Assessment of an Overexpressed Arabidopsis Purple Acid Phosphatase Gene (Atpap26) in Tobacco Plants
Background: Overexpression of known genes encoding key phosphate (Pi)-metabolizing enzymes, such as acid phosphatases (APases), is presumed to help plants with Pi availability and absorption as they are mostly exposed to suboptimal environmental conditions for this vital element.Objectives: In this study, the overexpression effect of AtPAP26, one of the m...
متن کامل